суббота, 25 октября 2014 г.

ПОЗИТРОН (материал из Википедии — свободной энциклопедии)

Позитро́н (от англ. positive — положительный) — античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона. При аннигиляции позитрона с электроном их масса превращается в энергию в форме двух (и гораздо реже — трёх и более) гамма-квантов.

Аннигиля́ция (лат. Annihilatio — уничтожение) — в физике реакция превращения частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных.

Наиболее изученной является аннигиляция электрон-позитронной пары. При низких энергиях сталкивающихся электрона и позитрона, а также при аннигиляции их связанного состояния — позитрония — эта реакция аннигиляции даёт в конечном состоянии два или три фотона, в зависимости от ориентации спинов электрона и позитрона. При энергиях порядка нескольких МэВ становится возможной и многофотонная аннигиляция электрон-позитронной пары. При энергиях порядка сотен МэВ в процессе аннигиляции электрон-позитронной пары рождаются в основном адроны.

Изучалась также и аннигиляция протон-антипротонной и нейтрон-антинейтронной пар.

Применение теории относительности

Аннигиляция является методом перевода энергии покоя E0 частиц в кинетическую энергию продуктов реакции. При столкновении одной из элементарных частиц и её античастицы (например, электрона и позитрона) происходит их взаимоуничтожение, при этом высвобождается огромное количество энергии (E = 2E0 = 2mc², где E0 — энергия покоя, m — масса частиц, c — скорость света в вакууме).

В настоящее время применение такого метода не реализовано ввиду колоссальной стоимости антивещества и сложности его хранения.

Подсчитано, что при вступлении во взаимодействие 1 кг антиматерии и 1 кг материи выделится приблизительно 1,8·1017 джоуль-энергии, что эквивалентно энергии, выделяемой при взрыве 42,96 мегатонн тринитротолуола. Самое мощное ядерное устройство из когда-либо взрывавшихся на планете, Царь-бомба (26,5 т), соответствовало 57 мегатоннам. Следует отметить, что порядка 50% энергии, выделившейся при аннигиляции (реакции пары нуклон-антинуклон), выделяется в форме нейтрино, а последние при малых энергиях практически не взаимодействуют с веществом.

Позитроны возникают в одном из видов радиоактивного распада (позитронная эмиссия), а также при взаимодействии фотонов с энергией больше 1,022 МэВ с веществом. Последний процесс называется «рождением пар», ибо при его осуществлении фотон, взаимодействуя с электромагнитным полем ядра, образует одновременно электрон и позитрон. Также позитроны способны возникать в процессах рождения электрон-позитронных пар в сильном электрическом поле.

В соответствии с теорией Дирака электрон и позитрон могут рождаться парой, и на этот процесс должна быть затрачена энергия, равная энергии покоя этих частиц, 2×0,511 МэВ. Поскольку были известны естественные радиоактивные вещества, испускавшие γ-кванты с энергией больше 1 МэВ, представлялось возможным получить позитроны в лаборатории, что и было сделано. Экспериментальное сравнение свойств позитронов и электронов показало, что все физические характеристики этих частиц, кроме знака электрического заряда, совпадают. Существование позитрона впервые было предположено в 1928 году Полем Дираком. Теория Дирака описывала не только электрон с отрицательным электрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории.

Позитрон был открыт в 1932 году американским физиком Андерсоном при наблюдении космического излучения с помощью камеры Вильсона, помещённой в магнитное поле. Название «позитрон» придумал сам Андерсон. Интересно, что Андерсон также предлагал, правда безуспешно, переименовать электроны в «негатроны». Он сфотографировал следы частиц, которые очень напоминали следы электронов, но имели изгиб под действием магнитного поля, противоположный следам электронов, что свидетельствовало о положительном электрическом заряде обнаруженных частиц. Вскоре после этого открытия, также с помощью камеры Вильсона, были получены фотографии, проливавшие свет на происхождение позитронов: под действием γ-квантов вторичного космического излучения позитроны рождались в парах с обычными электронами. Такие свойства вновь открытой частицы оказались в поразительном согласии с уже имевшейся релятивистской теорией электрона Дирака. В 1934 году Ирен и Фредерик Жолио-Кюри во Франции открыли ещё один источник позитронов — β+-радиоактивность.

Позитрон оказался первой открытой античастицей. Существование античастицы электрона и соответствие суммарных свойств двух античастиц выводам теории Дирака, которая могла быть обобщена на другие частицы, указывали на возможность парной природы всех элементарных частиц и ориентировало последующие физические исследования. Такая ориентация оказалась необычайно плодотворной, и в настоящее время парная природа элементарных частиц является точно установленным законом природы, обоснованным большим числом экспериментальных фактов.

Аннигиляция

Из теории Дирака следует, что электрон и позитрон при столкновении должны аннигилировать с освобождением энергии, равной полной энергии сталкивающихся частиц. Оказалось, что этот процесс происходит главным образом после торможения позитрона в веществе, когда полная энергия двух частиц равна их энергии покоя 1,022 МэВ. На опыте были зарегистрированы пары γ-квантов с энергией по 0,511 МэВ, разлетавшихся в прямо противоположных направлениях от мишени, облучавшейся позитронами. Необходимость возникновения при аннигиляции электрона и позитрона не одного, а как минимум двух γ-квантов вытекает из закона сохранения импульса. Суммарный импульс в системе центра масс позитрона и электрона до процесса превращения равен нулю, но если бы при аннигиляции возникал только один γ-квант, он бы уносил импульс, который не равен нулю в любой системе отсчёта.

С 1951 г. известно, что в некоторых аморфных телахжидкостях и газах позитрон после торможения в значительном числе случаев сразу не аннигилирует, а образует на короткое время связанную с электроном систему, получившую название позитроний. Позитроний в смысле своих химических свойств аналогичен атому водорода, так как представляет собой систему, состоящую из единичных положительного и отрицательного электрических зарядов, и может вступать в химические реакции. Поскольку электрон и позитрон — разные частицы, то в связанном состоянии с наинизшей энергией они могут находиться не только с антипараллельными, но и с параллельными спинами. В первом случае полный спин позитрония s = 0, что соответствует парапозитронию, а во втором — s = 1, что соответствует ортопозитронию. Интересно, что аннигиляция электрон-позитронной пары в составе ортопозитрония не может сопровождаться рождением двух γ-квантов. Два γ-кванта уносят друг относительно друга механические моменты, равные 1, и могут составить полный момент, равный нулю, но не единице. Поэтому аннигиляция в этом случае сопровождается испусканием трёх γ-квантов с суммарной энергией 1,022 МэВ. Образование ортопозитрония в три раза более вероятно, чем парапозитрония, так как отношение статистических весов (2s+1) обоих состояний позитрония 3:1. Однако даже в телах с большим процентом (до 50 %) аннигиляции пары в связанном состоянии, то есть после образования позитрония, преимущественно появляются два γ-кванта и лишь очень редко три. Дело в том, что время жизни парапозитрония около 10−10 с, а ортопозитрония — около 10−7 с. Долгоживущий ортопозитроний, непрерывно взаимодействующий с атомами среды, не успевает аннигилировать с испусканием трёх γ-квантов прежде, чем позитрон, входящий в его состав, аннигилирует с посторонним электроном в состоянии с антипараллельными спинами и с испусканием двух γ-квантов.

Возникающие при аннигиляции остановившегося позитрона два гамма-кванта несут энергию по 511 кэВ и разлетаются в строго противоположных направлениях. Этот факт позволяет установить положение точки, в которой произошла аннигиляция, и используется в позитрон-эмиссионной томографии.

В 2007 экспериментально доказано существование связанной системы из двух позитронов и двух электронов (молекулярный позитроний). Такая молекула распадается ещё быстрее, чем атомарный позитроний.

Позитроны в природе

Считается, что количество позитронов и электронов во Вселенной примерно одинаково, однако эта симметрия нарушилась. Пока температура Вселенной не понизилась до 1 МэВ, тепловые фотоны постоянно поддерживали в веществе определённую концентрацию позитронов путём рождения электрон-позитронных пар (такие условия существуют и сейчас в недрах горячих звёзд). После охлаждения вещества Вселенной ниже порога рождения пар оставшиеся позитроны аннигилировали с избытком электронов.

В космосе позитроны рождаются при взаимодействии с веществом гамма-квантов и энергичных частиц космических лучей, а также при распаде некоторых типов этих частиц (например, положительных мюонов). Таким образом, часть первичных космических лучей составляют позитроны, так как в отсутствие электронов они стабильны. В некоторых областях Галактики обнаружены аннигиляционные гамма-линии 511 кэВ, доказывающие присутствие позитронов.

В солнечном термоядерном pp-цикле (а также в CNO-цикле) часть реакций сопровождается эмиссией позитрона, который немедленно аннигилирует с одним из электронов окружения; таким образом, часть солнечной энергии выделяется в виде позитронов, и в ядре Солнца всегда присутствует некоторое их количество (в равновесии между процессами образования и аннигиляции).

Некоторые природные радиоактивные ядра (первичные, радиогенные, космогенные) испытывают бета-распад с излучением позитронов. Например, часть распадов природного изотопа 40K происходит именно по этому каналу. Кроме того, гамма-кванты с энергией более 1,022 МэВ, возникающие при радиоактивных распадах, могут рождать электрон-позитронные пары.

При взаимодействии электронного антинейтрино (с энергией больше 1,8 МэВ) и протона происходит реакция обратного бета-распада с образованием позитрона: p^+ + \bar{\nu}_e \rightarrow n^0 + e^+. Такая реакция происходит в природе, поскольку существует поток антинейтрино с энергией выше порога обратного бета-распада, возникающих, например, при бета-распаде природных радиоактивных ядер.

ЭЛЕКТРОНВОЛЬТ - МэВ (материал из Википедии — свободной энциклопедии)


Электро́нво́льт (редко электроновольт; русское обозначение: эВ, международное: eV) — внесистемная единица энергии, используемая в атомной и ядерной физике, в физике элементарных частиц и в близких и родственных областях науки (биофизике, физической химии, астрофизике и т. п.). В Российской Федерации электронвольт допущен к использованию в качестве внесистемной единицы без ограничения срока с областью применения «физика».


Основные сведения



Один электронвольт равен энергии, необходимой для переноса элементарного заряда в электростатическом поле между точками с разницей потенциалов в 1 В. Так как работа при переносе заряда q равна qU (где U — разность потенциалов), а 
элементарный заряд частиц, например, электрона составляет
 −1,602 176 565(35)·10−19 Кл, то: 
1 эВ = 1,602 176 565(35)·10−19 Дж = 1,602 176 565(35)·10−12 эрг.

В физике элементарных частиц в электронвольтах (и производных единицах) обычно выражается не только энергия, но и масса элементарных частиц, исходя из эквивалентности массы и энергии Е = mc² (или m = E/c²), где c — скорость света. Поэтому массу частиц корректнее выражать в эВ/c2, но делитель c2, там, где не может возникнуть двусмысленности, обычно опускают. В единицах массы 1 эВ = 1,782 661 845(39)·10−36 кг, и напротив, 1 кг = 5,609 588 85(12)·1035 эВа. е. м. = 931,494 061(21) МэВ.Импульс элементарной частицы также может быть выражен в электронвольтах (строго говоря, в эВ/c).

Электронвольт по сравнению с энергиями, характерными для большинства ядерных процессов, — маленькая величина, в этой области физики обычно применяются кратные единицы:
  • килоэлектронвольт (кэВ) — 1000 эВ,
  • мегаэлектронвольт (МэВ) — 1 млн электронвольт,
  • гигаэлектронвольт (ГэВ) — 1 млрд электронвольт.
Последнее поколение ускорителей элементарных частиц позволяет достичь нескольких триллионов электронвольт (тераэлектронвольт, ТэВ). Один ТэВ приблизительно равен (кинетической) энергии летящего комара.

Температура, которая является мерой средней кинетической энергии частиц, тоже иногда выражается в электронвольтах, исходя из соотношения температуры и энергии частиц в одноатомном идеальном газе Eкин=32. В температурных единицах 1 эВ соответствует 11 604,519(11) кельвин (см. постоянная Больцмана).
В химии часто используется молярный эквивалент электронвольта. Если один моль электронов перенесён между точками с разностью потенциалов 1 В, он приобретает (или теряет) энергию Q = 96 485,3365(21) Дж, равную произведению 1 эВ на число Авогадро. Эта величина численно равна постоянной Фарадея. Аналогично, если при химической реакции в одном моле вещества выделяется (или поглощается) энергия 96,5 кДж, то соответственно каждая молекула теряет (или получает) около 1 эВ.

В электронвольтах измеряется также ширина распада Γ элементарных частиц и других квантовомеханических состояний, например ядерных энергетических уровней. Ширина распада — это неопределённость энергии состояния, связанная с временем жизни состояния τ соотношением неопределённостейΓ = ħ/τ). Частица с шириной распада 1 эВ имеет время жизни 6,582 119 28(15)·10−16 с. Аналогично квантовомеханическое состояние с временем жизни 1 с имеет ширину 6,582 119 28(15)·10−16 эВ.

Одним из первых термин «электронвольт» применил американский инженер K. K. Darrow в 1923 году.

Кратные и дольные единицы

В ядерной физике и физике высоких энергий обычно используются производные единицы: килоэлектронвольты (кэВ, keV, 103 эВ), мегаэлектронвольты (МэВ, MeV, 106 эВ), гигаэлектронвольты (ГэВ, GeV, 109 эВ) и тераэлектронвольты (ТэВ, TeV, 1012 эВ). В физике космических лучей, кроме того, используются петаэлектронвольты (ПэВ, PeV, 1015 эВ) и эксаэлектронвольты (ЭэВ, EeV, 1018 эВ). В зонной теории твердого тела, физике полупроводников и физике нейтрино — миллиэлектронвольты (мэВ, meV, 10−3 эВ).
КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
101 эВдекаэлектронвольтдаэВdaeV10−1 эВдециэлектронвольтдэВdeV
102 эВгектоэлектронвольтгэВheV10−2 эВсантиэлектронвольтсэВceV
103 эВкилоэлектронвольткэВkeV10−3 эВмиллиэлектронвольтмэВmeV
106 эВмегаэлектронвольтМэВMeV10−6 эВмикроэлектронвольтмкэВµeV
109 эВгигаэлектронвольтГэВGeV10−9 эВнаноэлектронвольтнэВneV
1012 эВтераэлектронвольтТэВTeV10−12 эВпикоэлектронвольтпэВpeV
1015 эВпетаэлектронвольтПэВPeV10−15 эВфемтоэлектронвольтфэВfeV
1018 эВэксаэлектронвольтЭэВEeV10−18 эВаттоэлектронвольтаэВaeV
1021 эВзеттаэлектронвольтЗэВZeV10−21 эВзептоэлектронвольтзэВzeV
1024 эВиоттаэлектронвольтИэВYeV10−24 эВиоктоэлектронвольтиэВyeV
     применять не рекомендуется

Некоторые значения энергий и масс в электронвольтах

Энергия кванта электромагнитного излучения с частотой 1 ТГц
4,13 мэВ
Тепловая энергия поступательного движения одной молекулы при комнатной температуре
0,025 эВ
Энергия кванта оптического излучения с длиной волны 1240 нм
1,0 эВ
Энергия ионизации атома водорода
13,6 эВ
Энергия электрона в лучевой трубке телевизора
Порядка 20 кэВ
Энергии космических лучей
1 МэВ — 1·1021 эВ
Типичная энергия ядерного распада
альфа-частицы
2-10 МэВ
бета-частицы и гамма-лучи
0-20 МэВ
Массы частиц
Нейтрино
0,2 - 2 эВ
Электрон
0,510998910(13) МэВ
Протон
938,272013(23) МэВ
Бозон Хиггса
125 - 126 ГэВ[10]
Планковская масса
MP=cG
≈ 1,2209·1019 ГэВ